
Re-forming the Internet with its End Users

1. Introduction

Almost a quarter of the world's population—1.4 billion
people—now use the Internet, and are thus tapping into
mankind’s most exciting technology for communication,
collaboration, organization, and mass coordination of be-
havior towards shared goals. However, the websites that
coordinate and broadcast this information are controlled
and created by a relatively small cabal of program-
mers—there are only a few million software engineers in
the world.

Although we hope these programmers solve the prob-
lems that end users face, they can only be paid to if there is
a clear business case to be made for a profitable market of
users. Even then, end users are at the mercy of business
goals, since the business owner decides how to modify and
extend the website, adding or improving features that affect
the lives of the end users. The programmer for my online
banking website implemented an HTML table that displays
my transaction history, but not a simple graph or chart of
the information that would help me manage my finances.
My phone service website records and displays my phone
call behavior, and internally mines this data for business
calculations of how much revenue they extract against my
phone usage, but the website does not surface this analysis
to me to suggest a cheaper plan that saves me money.

I envision an Internet where anybody can patch any
website to support features they want. An Internet where an
end user with an idea need not convince Facebook or Bank
of America to implement the solution to their need. Where
Internet shoppers improve their own shopping user experi-
ence, instead of relying on the adversarial whims of their e-
merchants who can profit by withholding information.
Where knowledge workers can create and improve the in-
formation systems that help them get their work done,
rather than arguing with overburdened programmers. This
Internet can be bootstrapped from our current one, using
technology to overcome two technical barriers:
1. Barrier of ownership. Each website is controlled by a

single entity, with its own motives, and small third par-
ties have a disadvantaged position from which to influ-
ence their design.

2. Barrier of programming. Even if a user has access to
the website’s source, he still must have the program-
ming skill to change the site, understanding HTML,
PHP, relational databases, and SQL. This limits the
number and types of people who can implement the
changes that solve their domain-specific problems.

The following work attacks these two barriers.

2. Enhancing existing websites with new tasks

My work on the project [1] democratizes the
ability to modify existing websites to support new tasks.

Today, tools like Greasemonkey and Chickenfoot already
provide the raw technology for modifying a website in the
end user’s web browser instead of the webmaster’s web
server by injecting it with a special browser-side script. The
problem, however, is that it takes a programmer to enhance
a website with such a script, and there are only a few mil-
lion programmers—for too few to tackle the plethora of
175 million websites on the Internet.

 instead leverages the Internet’s 1.4 billion end
users, allowing a single programmer to enhance many web-
sites at once. A programmer authors a single site-
independent web enhancement, and end users attach it to all
the sites they use in the context of their existing tasks. This
architecture of write-once apply-anywhere web enhance-
ments divides web enhancement into two roles: program-
ming and attaching. This allows end-users to do the attach-
ing, and bring enhancements to many more sites.

The key is enabling end users to teach an enhancement
how to attach to a new website and understand its data rep-
resentation, a difficult problem traditionally studied as web
information extraction or web scraping. presents a
new interactive machine learning technique designed for

Michael Toomim
 University of Washington

!"#$%&

'(#%)*'%

timeline widget bank website

End user applies

it to a website

Programmer authors

enhancement

Figure 2: reform divides web enhancement into roles of
authoring, for programmers, and attaching, for end users.

Popup menu
follows cursor
for selecting
examples

Selected examples
(fourth is off screen)

Figure 1: Before and after an end user made a map for a page
of U.S. nuclear reactor locations. The process took five clicks.

2009 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

978-1-4244-4876-0/09/$25.00 ©2009 IEEE 260

cscaffid
Text Box
Describe real world
setting

cscaffid
Text Box
Identify problem

cscaffid
Text Box
Describe approach to solve the stated problem

cscaffid
Text Box
Explain how this work is related to other existing work

novice end users, allowing them to scrape a variety of data
layouts by example, without seeing the underlying webpage
representation.

 is a library for Firefox extensions. Rather than
hard-code HTML or DOM patterns to access parts of a
webpage, web enhancements (Firefox extensions) query the

 library with a schema expressing the general type
of data they expect a webpage to contain. then
prompts the user to click on parts of the page that match the
schema, interactively training its scraper by example. For
instance, a map enhancement will use to prompt the
end user to click on example addresses. The library
then generates and applies an extraction pattern, provides
the enhancement with its requested integration points, and
stores the pattern in a central database for future use by
others.

3. Authoring database-backed sites by example

Traditionally, WYSIWYG tools have enabled non-
programmers to develop webpages, but such tools were
never powerful enough to support the modern data-driven
database-backed websites that bring interactivity and mass
two-way communication to the web. In future work we can
use the web scraping technology in to allow non-
programmers to create such database-backed websites by-
example within WYSIWYG editors.

For example we can allow a non-programmer to im-
plement the basics of a photo-sharing site like Flickr, a
news site like CNN.com, or a social communication site
like Facebook or Twitter. Non-programmers can currently
implement a single page of such a site with a WYSIWYG
editor like Dreamweaver, but to support dynamic user-
defined data they must jump into the world of databases
and server-side programming.

I propose implementing a photo website like Flickr in
the following way. First, the user makes a single concrete
example HTML page that exemplifies the template he
wants all pages to look like, and contains some example
data laid out in the desired way. For the Flickr clone, for
instance, he might copy and paste an existing Flickr page,
or design his own. The page probably contains a header,
navigation bar a list of photos with captions and tags, and a
footer.

Now, the user needs to describe to the system which
parts of this page are to come from database fields and
which parts are static template pieces. This can be done
with the web scraping technology. The user selects
a photograph on the page and marks it as a “photo.” The
system learns a pattern and highlights everything else on
the page that looks like a photo, and the user corrects this
inference by providing positive and negative examples.
Now the user selects a caption and marks it “caption,” a
username and marks it “username,” and the set of tags and
marks them “photo tags.” After these patterns are described
to the system, it is able to extract the example data on this
page, deduce a database schema, and fill the database with
the example data. It also records the HTML template code
surrounding each datum, and how to map the template to
the database it just induced. It can now reproduce a dy-
namic database-backed version of the website from the

mockup, without requiring the user to drop into a pro-
gramming language and understand how relational data-
bases work.

4. Putting it together

This web authoring technique can combine with the
 web enhancement technique to allow end users to

modify existing websites to support new tasks. Suppose, for
instance, that a Vietnamese rice trader wants to use Face-
book to record and develop his trading business relation-
ships. He does this by teaching what a person’s
name looks like on Facebook. Then he enters “edit” mode,
and enters some comments about how reliable the other
person was in business relationships. He selects his notes
and marks it “trading notes,” teaching a new data-
base field. By copying this trading notes data to the other
sections of the site where that user’s name appears, the sys-
tem learns how to display a contact’s trading notes when-
ever the contact’s name appears. He can then share this
enhancement with other rice traders, allowing them to col-
laboratively track which traders have been reliable and are
worth doing business with in the future.

There are far too many end users (1.4b), with far too
many goals, on far too many websites (175m), to support
with our existing labor force of programmers (~3m). This
technology could lower the barrier between those who de-
sign the Internet and those who use it, and enable the 1.4
billion Internet end users to forge their own information
systems.

5. References

1. Michael Toomim, Steven M. Drucker, Mira
Dontcheva, Ali Rahimi, Blake Thomson and James A.
Landay. Attaching UI Enhancements to Websites with
End Users. In Proc CHI 2009. ACM Press (2009).

Figure 3: To plot her spending history with reform, the user clicks
the Timeline button, then clicks an example time and amount.

261

cscaffid
Text Box
Describe progress to date

cscaffid
Text Box
Explain why more work is needed

cscaffid
Text Box
Describe plans for future research

cscaffid
Text Box
Describe plans for future research

